
OWASP

Advanced Mobile Application
Code Review Techniques

Sreenarayan A

Nov 20, 2013

OWASP

Take Away for the Day

•  Why Mobile Security?
•  Purpose of Code Review?!
•  Decompiling Windows Phone App
•  Windows Phone Insecurities –from code base
•  Hybrid Insecurities –from code base
•  Advanced Technique –Mobile Code Reviews
•  Checklist –Windows, Hybrid, HTML5 applications

OWASP

Why is security relevant for Mobile Platform?

•  400% Increase in the number for Organizations
Developing Mobile Platform based applications.

•  300% Increase in the no of Mobile Banking
Applications.

•  500% Increase in the number of people using
the Mobile Phones for their day to day
transactions.

•  82% Chances of end users not using their Mobile Phones with proper caution.
•  79% Chances of Mobile Phone users Jail Breaking their Phones.
•  65% Chances of Mobile Phone users not installing Anti-virus on their Mobile

Phones.
•  71% Chances of any application to get misused.
•  57% Chances of a user losing his sensitive credentials to a hacker.

OWASP

Market Statistics of Mobile Users

OWASP

Mobile	 Market	 Trends	

OWASP

Different Types of Mobile Applications

•  WAP Mobile Applications
•  Native Mobile Applications
•  Hybrid Mobile Applications

OWASP

Different Types of Mobile Applications

OWASP

Different Types of Mobile Architecture

OWASP

Why did we learn the above types??

•  Which applications can be Code Reviewed?
–  WAP Mobile Applications ?
–  Native Mobile Applications ?
–  Hybrid Mobile Applications ?

•  We have to get to know of the basics!

OWASP

Mobile Application Source Code Review

OWASP

Secure Code Review of the Mobile App Code
• What	 do	 you	 mean	 by	 Applica'on	 Tes'ng?	
• What	 do	 you	 mean	 by	 Security	 Tes'ng?	
• What	 are	 the	 diff	 types	 of	 Security	 Tes'ng?	
• What	 do	 you	 mean	 by	 White-‐box	 approach	 or	 Secure	 Code	 Review?	

Ques'ons	 to	 be	 answered	 ahead:	
• What	 are	 the	 goals/purpose	 of	 Code	 Review?	

• What	 is	 the	 methodology	 of	 Code	 Review?	
• What	 the	 tools	 which	 can	 be	 used	 to	 Code	 Review?	

• Can	 Code	 Review	 be	 done	 on	 all	 plaBorms?	
1.  ANDROID	 ?	
2.  iPHONE	 /	 iPAD	 ?	
3.  WINDOWS	 PHONE	 /	 WINDOWS	 MOBILE	 ?	
4.  BLACKBERRY	 ?	

OWASP

Goals Mobile Application Source Code
Review

OWASP

Goals of Analyzing the Source Code

• “UNDERSTAND	 THE	 WORKING	 OF	 THE	 APPLICATION	 AND	 TO	 FIGURE	 OUT	
THE	 LOOPHOLES!”	

• 	 	 	 	 To	 find	 Treasure	 Key	 Words	 like:	 password	 ,	 keys	 ,	 sql,	 algo,	 AES,	 DES,	
Base64,	 etc	

•  Detect the data storage definitions
•  Detect backdoors or suspicious code
•  Detect injection flaws
	
•  Figure	 out	 weak algorithm usage and hardcoded keys
	
• E.g.	 Password	 in	 Banking	 ApplicaZon	 (SensiZve	 InformaZon)	
• E.g.	 Angry	 Birds	 Malware	 (Stealing	 Data)	
• E.g.	 Zitmo	 Malware	 (Sending	 SMS)	

• We	 have	 understood	 the	 goals,	 how	 to	 achieve	 them?	 Methodology.	

	

OWASP

Method of Mobile Application Source Code
Review

OWASP

Methodology / Study

S1:	 Gaining	 access	 to	 the	 Source	 code	 [Development	 Team	 or	 Decompile]	
	
S2:	 Understanding	 the	 Technology	 used	 to	 code	 the	 applicaZon.	
	
S3:	 Build	 the	 Security	 Threat	 Model.	
	
S4:	 Derive	 the	 keyword	 paGerns.	
	
S5:	 Analyze	 the	 source	 code	 against	 list	 of	 keywords.	
	
S6:	 Build	 the	 automa'on	 script	 for	 quick	 results.	

OWASP

S1: Gain access to the source code

• Tools used:
-  De-compresser (Winrar / Winzip / 7zip)
-  .Net Decompiler (ILSpy)
-  Visual Studio / Notepad

• Steps
1.  . xap -> .dll
2.  .dll -> .csproject / .vbproject

•  Mitigation
1.  Free Obfuscator: http://confuser.codeplex.com/
2.  Dotfuscator: Link

Reverse Engineer the Windows Phone Application

OWASP

Mobile Threat Modeling

OWASP

Mobile Platform Operating Systems ??

•  Android
–  Highest market share, open source & the target of

malwares

•  iOS
–  Most user friendly, proprietary

•  Blackberry
–  Enterprises preferred it for a long time

•  Windows Phone
–  Been a year, not much sales, steady growth

OWASP

Windows Phone Insecurities

OWASP

1. Local Data storage flaws
Code snippet showcasing Local Data Storage:

OWASP

Local Data storage flaws
Code snippet showcasing Preference file based storage:

OWASP

2. Logging
Code snippet showcasing contents logged in an application log file.

OWASP

3. Weak encoding/encryption
Code snippet showcasing encryption algorithm implementation.

OWASP

4. Insecure Console Logging

Code snippet showcasing sensitive information logged on console.

OWASP

5. SD Card based Storage
Code snippet showcasing SD Card based storage of sensitive information.

OWASP

6. Sensitive Information in Comments

Code snippet showcasing sensitive information present in comments.

OWASP

Hybrid Application Insecurities

OWASP

1. Local Data storage flaws
Code snippet showcasing Local Data Storage:

OWASP

Local Data storage flaws
Code snippet showcasing Preference file based storage:

OWASP

2. Logging

Code snippet showcasing contents logged in an application log file.

OWASP

3. Insecure Console Logging

Code snippet showcasing sensitive information logged on console.

OWASP

4. SD Card based Storage
Code snippet showcasing SD Card based storage of sensitive information.

OWASP

Android Insecurities

OWASP

1. Local Data storage flaws

OWASP

Local Data storage flaws

•  SQLite DB screenshot??????

OWASP

2. Malwares

•  Malwares present in the application, sends
unauthorized SMS or makes unauthorized call

•  ZITMO
•  public class SmsReceiver extends BroadcastReceiver

•  {

•  public static final String KEY_SMS_ARRAY = "pdus";

•  public static final String TAG = "SmsReceiver";

•  public void onReceive(ContextparamContext, Intent paramIntent)

•  {

•  Bundle localBundle = paramIntent.getExtras();

•  if ((localBundle != null) && (localBundle.containsKey("pdus")))

•  {

•  abortBroadcast();

•  paramContext.startService(newIntent(paramContext, MainService.class).putExtra("pdus", localBundle));

•  }

•  }

•  }

OWASP

Malwares

•  HttpPostlocalHttpPost = new HttpPost(str);

•  localHttpPost.setEntity(paramUrlEncodedFormEntity);

•  BasicResponseHandlerlocalBasicResponseHandler = new BasicResponseHandler();

•  JSONObjectlocalJSONObject = (JSONObject)newJSONTokener((String)newDefaultHttpClient().execute(localHttpPost,
localBasicResponseHandler)).nextValue();

•  localObject = localJSONObject;

Image Credit: Fortinet

OWASP

3. Weak encoding/encryption

OWASP

4. Insecure Logging

OWASP

5. Side Channel Leakage

OWASP

6. Tapjacking

•  Like clickjacking

•  Click on play game..
•  ..you just spent $1000 buying a gift

•  Android 2.3 and above
•  <Button android:text="Button"

•  android:id="@+id/button1"

•  android:layout_width="wrap_content"

•  android:layout_height="wrap_content"

•  android:filterTouchesWhenObscured="true">

•  </Button>

OWASP

iOS Insecurities

OWASP

1. Insecure URLScheme

•  An application can call other applications by

accessing a URL scheme

�  “iP://RespMsg=Approved” – Doesn’t this look
fishy?

OWASP

Discovering exposed URLSchemes

�  URLSchemes related information is stored in the
plist file

�  For example,

�  Plist file can be easily extracted from the app file
if the phone is jailbroken

OWASP

2. Insecure UIWebView Implementation

•  UIWebView is used to embed the web content in
the application.

•  Web page can be loaded inside the application
by simply passing the URL to the UIWebView
class object.

•  This object renders the HTML as the iOS Safari
browser (webkit) would render it.
–  HTML Injection possible

•  It can also execute JavaScript.
–  Cross-site Scripting (XSS) possible

OWASP

Insecure UIWebView Implementation

OWASP

3. iOSBackgrounding

•  In order optimize the UI performance, the iOS
takes screenshot of the application screen
before moving it to background.

•  When the application is re-launched, as the
actual UI is loading in the background, it
displays the screenshot in the foreground.

•  Screenshot may contain sensitive data like credit
card number, profile info etc.

•  Screenshot path
•  /private/var/mobile/Applications/ApplicationID/

OWASP

iOS Backgrounding

OWASP iGoat Project

OWASP

4. Buffer Overflows

•  When the input data is
longer than the buffer
size, if it is accepted, it
will overwrite other
data in memory.

•  No protection by
default in C, Objective-
C, and C++

Apple Recommends

OWASP

5. Insecure Network Connections

�  Protect the data while in transit
�  Most commonly used protocol is HTTP or HTTPS

– means using NSURL or NSURLConnection class
�  HTTPS should be used

�  Never use
setAllowsAnyHTTPSCertificate:forHost:

�  Fail safe on SSL error - Implement the
connection:didFailWithError: delegate

OWASP

Advanced Mobile Code Reviews

OWASP

Android Testing – The Logic

S. No. Checks Analysis Logic

1 Does the application leak sensitive
information via Property Files?

Check for presence of putString,
MODE_PRIVATE,
MODE_WORLD_READABLE,
MODE_WORLD_WRITEABLE,
addPreferencesFromResource in Source
Code

2 Does the application leak sensitive
information via SD Card storage?

Check for presence of
WRITE_EXTERNAL_STORAGE in Android
Manifest File and
getExternalStorageDirectory(), sdcard in
Source code

3 Is the application vulnerable to
TapJacking attack?

Check for presence of <Button> tag not
containing filterTouchesWhenObscured="true"
in Layout file

4 CanMalicious Activity be performed due
to insecure WebView implementation?

Check for presence of
addJavascriptInterface(),
setJavaScriptEnabled(true) in Source code

OWASP

S. No. To Check Analysis Logic

5 Does the application leak sensitive information
via hardcoded secrets?

Check for presence of // and /* */ in
Source code

6 Can sensitive information be enumerated due to
the enabled Autocomplete feature?

Check for presence of <Input> tag
not containing textNoSuggestions in
Layout file

7 Does the application leak sensitive information
viaSQLite db?

Check for presence of db, sqlite,
database, insert, delete, select,
table, cursor, rawQueryin Source
code

8 Does the application leak sensitive information
due to insecure Logging mechanism?

Check for presence of Log. In
Source code

9 Is critical data of the application encrypted using
proper control?

Check for presence of MD5,
base64, des in Source code

Android Testing – The Logic

OWASP

S. No. To Check Analysis Logic
10 Does the application implement a insecure transport

mechanism?
Check for presence of http://,
HttpURLConnection,URLConnection
, URL, TrustAllSSLSocket-Factory,
AllTrustSSLSocketFactory,
NonValidatingSSLSocketFactory in
Source code

11 Does the application leak sensitive system level
information via Toast messages?

Check for presence of sensitive
information in Toast.makeText

12 Does the application have debugging enabled? Check for presence of
android:debuggable set to true in
Android Manifest File

13 Does the application misuse or leaksensitive
information like device identifiers or via a side
channel?

Check for the presence of uid, user-
id, imei, deviceId,
deviceSerialNumber, devicePrint, X-
DSN, phone, mdn, did, IMSI, uuid in
Source code

14 Is the application vulnerable to Intent Injection? Check for the presence of
Action.getIntent() in the Source code

15 Does the application misuse or leaksensitive
information like Location Info or via a side channel?

Check for the presence of
getLastKnownLocation(),
requestLocationUpdates(),
getLatitude(), getLongitude(),
LOCATION in Source code

OWASP

Handy tricks for Mobile Code Reviews

•  Use the analysis logic given in the previous
slides to create custom script for a quick static
analysis.

•  Use the custom script for a quick static analysis

OWASP

Results: Insecure Banking Application
S. No. Vulnerabilities Found

1 Information Sniffing due to Unencrypted
Transport medium

2 Sensitive information disclosure via Property
Files

3 Sensitive information disclosure via SD card
storage

4 Sensitive information disclosure via SQLite DB
5 Sensitive information disclosure via Device and

Application Logs
6 Sensitive information disclosure via Side

Channel Leakage

OWASP

Results: Insecure Banking Application

S. No. Vulnerabilities Found

7 Malicious Activity via Client side XSS
8 Malicious Activity due to insecure WebView

implementation
9 Sensitive information leakage due to hardcoded

secrets
10 Sensitive information leakage due to weak

encryption algorithm
11 Malicious Activity via Backdoor
12 Malicious Activity via Reverse Engineering

OWASP

Hybrid Mobile App – The Logic
S No Checks Analysis Logic

1 Does the application leak sensitive information via
device memory?

"Look for strings like:

 ""Database""
 ""Statement""
""Ti.Database.install""
""Titanium.Database.DB""
to locate all the locations where SQLite or any other database used to
store content localy."

2 Does the application leak sensitive information via
Property Files?

"Check the function Ti.App.Properties.setObject() to know what
parameters are passes and how the information is stored. The
parameter passed in the function stores a cookie.

Look for session related presence in the content handled by below
mentioned keywords:
Look for the keywords:
"" getSharedPreferences();""
""SharedPreferences settings""
"" CookieStore""
""Cookie Manager""
""CookieHandler""
""PersistentCookieStore"""

3 Does the application leak sensitive information via
SD Card storage?

Look for keywords like:
FileConnection
SDCard
File

OWASP

Hybrid Mobile App – The Logic
4 CanMalicious Activity be performed due to insecure

WebView implementation?
Look for Javascript and Webview

5 Can sensitive information be enumerated due to the
enabled Autocomplete feature?

Look for storage in the form fields.
"TextFields"
and look for the way its being handled.

Also check if response.logged value is set to "true" for the username and
password

6 Does the application leak sensitive information
viaSQLite db?

Check for presence of db, sqlite, database, insert, delete, select, table,
cursor, rawQueryin Source code

7 Does the application leak sensitive information due to
insecure Logging mechanism?

Logging occurs via:
Ti.API.log('info', 'message');
Ti.API.info('message');
console.log();
or even print message by system.out.println();
and also generating separate files for logs.

Check for any sensitive data that is available in logs.

8 Is critical data of the application encrypted using proper
control?

Look in the file which has the "SQLiteEncryption" or "SQLCipher" or similar
encryption class implementation present

9 Does the application implement a insecure transport
mechanism?

"Look for strings like:
httpsconnection;
secureconnection;
getSecurityInfo();
httpconnection;
certificateStore = require('ti.certificatestore');
certificateStore.addCertificate('server.p12', 'password');

to look for all instances related to SSL"

OWASP

Hybrid Mobile App – The Logic
10 Does the application leak sensitive system level

information via Toast messages?
Check for presence of sensitive information in Toast.makeText

11 Does the application have debugging enabled? Check for the string "debug" in the source code

12 Does the application misuse or leaksensitive information
like device identifiers or via a side channel?

Check for the presence of uid, user-id, imei, deviceId, deviceSerialNumber,
devicePrint, X-DSN, phone, mdn, did, IMSI, uuid in Source code

13 Does the application misuse or leaksensitive information
like Location Info or via a side channel?

Check for the presence of getLastKnownLocation(),
requestLocationUpdates(), getLatitude(), getLongitude(), LOCATION in
Source code

14 Does the application leak sensitive information via
source code?

Look for: "password" , "pin", "mpin", or other related strings in the application
source code

15 Does the application leak data in the cache? "Check for Keywords:
""Ti.Filesystem.applicationCacheDirectory""
""cache""
""HTTPClient cache""

throughout in the application source code

If cache is not supposed to be used, it should be updated as:
client.setRequestHeader('Cache-Control','no-cache');
client.setRequestHeader('Cache-Control','no-store');
appropriately."

OWASP

iOS Testing – The Logic

S. No. Checks Analysis Logic

1 Does the application leak sensitive
information via device memory?

Check for presence ofNSFile, writeToFile in
Source Code

2 Can the application leak sensitive
information due to iOS default
Screencapture feature?

Check for the presence of window.hidden in
applicationWillEnterBackground and
applicationWillTerminate functions in Source
code.

3 Does the application leak sensitive
information via hardcoded secrets?

Check for presence of // and /* */ in Source
code

4 Is the application vulnerable to buffer
overflow attack?

Check for the presence of strcat, strcpy,
strncat, strncpy, sprintf, vsprintf, gets in the
Source code

OWASP

S. No. Checks Analysis Logic

5 Can malicious activties be performed due to
insecure implementation of URL Schemes?

Check for the presence of presence
of Authorisation in functions having
openUrl, handleOpenURL.

6 Does the application leak sensitive information
viaSQLite db?

Check for presence of db, sqlite,
database, insert, delete, select,
table, cursor, sqlite3_prepare in
Source code

7 Does the application leak sensitive information
due to insecure Logging mechanism?

Check for presence of NSLog in
Source code

8 Is critical data of the application encrypted using
proper control?

Check for presence of MD5, base64,
des in Source code

iOS Testing – The Logic

OWASP

S. No. Checks Analysis Logic

9 Does the application implement a insecure transport
mechanism?

Check for presence of http://, URL,
setAllowsAnyHTTPSCertificate,
NSURL,writeToUrl,
NSURLConnection, CFStream,
NSStreamin Source code. Also
check for presence of redirection to
http in via didFailWithError in the
Source code.

10 Does the application misuse or leaksensitive
information like device identifiers or via a side
channel?

Check for the presence of uid, user-
id, imei, deviceId,
deviceSerialNumber, devicePrint, X-
DSN, phone, mdn, did, IMSI, uuid in
Source code

11 Does the application misuse or leaksensitive
information like Location Info or via a side channel?

Check for the presence of
CLLocationManager,
startUpdatingLocation,
locationManager,
didUpdateToLocation,
CLLocationDegrees, CLLocation,
CLLocationDistance,
startMonitoringSignificantLocationC
hanges, LOCATION in Source code

iOS Testing – The Logic

OWASP

• 	 QuesZons	 and	 Answers	
• 	 Quiz	
• 	 Feedback	

OWASP

Thank You

Sreenarayan A
Sreenarayan.india@gmail.com
Twitter: @ace_sree

Nov 20, 2013

