
Modern Attacks on SSL/TLS
Let the BEAST of CRIME and TIME be not so LUCKY

Pratik Guha Sarkar Shawn Fitzgerald

Takeaway

Background

• BEAST

• Lucky 13

• RC4 biases

• CRIME

• BREACH

• TIME

Prevention

• With and

• without

• TLS 1.2

BEAST

BEAST - What is it ?

• Browser Exploit Against SSL/TLS

• Used crypto flaws in SSL to recover plaintext cookies

• Refined previous attacks on CBC in SSL to make them
practical

• Innovation was exploiting chosen boundary capability

CBC Attack in SSL

CBC Attack in SSL

=

=

Ciphertext block attacker
can observe

?

Target Block For Decrypting

CBC Attack in SSL

=
Plaintext, attacker
doesn’t know, but wants to

↓

Prior Ciphertext Block
(Attacker observes)

Encrypted!

=

Ciphertext block attacker
can observe

XOR

CBC Attack in SSL

=

=

Ciphertext block attacker
can observe

?

CBC Attack in SSL

=

XOR

Plaintext, of attacker’s choosing

↓

Prior Ciphertext Block
(Attacker observes)

Encrypted!

=

Ciphertext block attacker
can observe

CBC Attack in SSL

=

XOR

Plaintext, of attacker’s choosing

↓

Prior Ciphertext Block
(Attacker observes)

Encrypted!

=

Ciphertext block attacker
can observe

What shall we choose?

CBC Attack in SSL

=

XOR

Plaintext, of attacker’s choosing

↓

Prior Ciphertext Block
(Attacker observes)

Encrypted!

=

Ciphertext block attacker
can observe

What shall we choose?

=
Prior

Ciphertext Block

CBC Attack in SSL

=

XOR

Plaintext, of attacker’s choosing

↓

Prior Ciphertext Block
(Attacker observes)

Encrypted!

=

Ciphertext block attacker
can observe

What shall we choose?

=
Prior

Ciphertext Block

Cancels Out!

CBC Attack in SSL

=

XOR

Plaintext, of attacker’s choosing

↓

Prior Ciphertext Block
(Attacker observes)

Encrypted!

=

Ciphertext block attacker
can observe

What shall we choose?

=
Prior

Ciphertext Block

Guess of Plaintext
We want to learn

XOR

XOR

Prior
Ciphertext Block

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Inverse of Plaintext
Ciphertext Block

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

CBC Attack in SSL

• Remember This Slide?

CBC Attack in SSL

• Remember This Slide?

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

If we guessed right, we will see an output that MATCHES a cipher
text block we saw previously!

CBC Attack in SSL

=

↓ Encrypted!

=

Ciphertext block attacker
can observe

Guess of Plaintext
We want to learn

XOR

Prior
Ciphertext Block

If we guessed right, we will see an output that MATCHES a cipher
text block we saw previously!

=?

HTTP Request – What Do I Know?

POST /login HTTP/1.1

Host: bank.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0

Cookie: a=secrets298fc1c149afbf4c8996fb924

I know everything but the cookie!

Chosen Boundary in a Slide

What the attacker knows

What the attacker DOESN’T know.

Different Ciphertext Blocks

G E T / … C o o k i e : a = s e c r e t … s

↓

Attacker pads to a block boundary!

Chosen Boundary in a Slide

What the attacker knows

What the attacker DOESN’T know.

Different Ciphertext Blocks

G E T / … C o o k i e : a = s e c r e t … s

↓

G E T / A … 1 . 1 \ \ C o o k i e : a = s e

↓

Put It Together: BEAST

• Attacks SSL 3.0 TLS 1.0 with CBC Cipher suites

• Steals Cookies

• Works on HTTPS-only sites

• Sorry Paypal

BEAST – Feasibility

• Ability to eavesdrop on the network

• Force victim to visit attackers page

• Ability to inject plaintext in an active SSL/TLS session

BEAST – Counter Measures

• Upgrade browsers

• Enable TLS 1.1, preferably 1.2

• Use RC4

Interlude: Protocol Downgrades

• We’ve mentioned TLS 1.1 and 1.2

• They’re great!

• There’s a problem:

Interlude: Protocol Downgrades

• We’ve mentioned TLS 1.1 and 1.2

• They’re great!

• There’s a problem:

They provide no security at all against an
active attacker

Interlude: Protocol Downgrades

TLS 1.1 - Browser retries !

TLS 1.2

TLS 1.0 - Browser retries !

drops the packet drops the packet

drops the packet

drops the packet

“Success” SSLv3 No Extensions - Browser retries !

User Server

Interlude: Protocol Downgrades

Why Do Browsers Support Fallback?

• Networks Are Hostile to TLS 1.1+

• Middleboxes don’t recognize it and choke

• Sites Can’t Speak TLS 1.1+

• Sometimes an error (not so bad)

• Sometimes they just hang (quite bad)

Interlude: Protocol Downgrades

• Until Browsers Remove Fallback to TLS 1/SSLv3 we
cannot fully rely on TLS 1.1+

• Until sites stop breaking for TLS 1.1+ Browsers can’t
Remove the Fallback

• Not to call anyone out…. But….

• https://www.imperialviolet.org/2013/10/07/f5update.html

https://www.imperialviolet.org/2013/10/07/f5update.html
https://www.imperialviolet.org/2013/10/07/f5update.html

Lucky 13

Lucky 13 - What is it ?

• Successor of Padding Oracle Attack

• Timing attack on CBC encryption mode

• 13 bytes of header information in TLS MAC calculation
leaks timing information during decryption.

Lucky 13 – How it works

Time to validate Padding

Lucky 13 – How it works

Time to validate MAC

Time to validate Padding

Lucky 13 – How it works

Time to validate Padding

Lucky 13 – How it works

Ideal time to validate MAC

Time to validate Padding

Lucky 13 – How it works

Extra time to validate MAC

Ideal time to validate MAC

Time to validate Padding

Lucky 13 – Feasibility

• Needs Man-in-the-middle

• CBC-mode encryption in versions of TLS are potentially
vulnerable.

• Requires huge number of request

• Requires no Network jitter

Lucky 13 – Counter Measures

• Uniform processing time to decrypt ciphertexts

• Add random timing delays to the decryption for any
timing attack

• Using stream cipher like RC4

• Using an authenticated encryption algorithm, such as
AES-GCM

RC4

RC4 Biases - What is it ?

RC4 Biases - What is it ?

RC4 Biases – Feasibility

• Force victim to renegotiate.

• This attack will require over 4 billion SSL

connections or re-negotiations for an individual HTTP
session.

RC4 Biases – Counter Measures

• Researchers still working on finding mitigations of this
issue.

• Temporary mitigations

• Throttle client initiated re-negotiations and connections
from individual IP addresses

• If possible use block ciphers with mitigations of timing
and CBC mode encryption attack mitigated

Compression

How compression works?

.

•DEFLATE compression mechanism

CRIME

CRIME - What is it ?

• Compression Ratio Info-leak Made Easy

• Chosen plaintext attack on HTTP request

• Uses size information in TLS compression to recover
plaintext cookies

CRIME – How it works

CRIME Attacker

Victim User

CRIME – How it works

GET /evil_request_path HTTP/1.1

Host: bank.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0

Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924

Attacker doesn’t control entire request,
but can see its cipher text on the wire

CRIME – How it works

GET /evil_request_path HTTP/1.1

Host: bank.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0

Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924

Attacker fully controls request path

CRIME – How it works

GET /evil_request_path HTTP/1.1

Host: bank.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0

Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924

Attacker does not see, but can infer these values

CRIME – How it works

GET /evil_request_path HTTP/1.1

Host: bank.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0

Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924

Attacker cannot see/control, wants to steal

CRIME – How it works

GET /sessionid=a HTTP/1.1
Host: bank.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0
Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924

=> Compressed Length = 12,494 bytes – Not a match

GET /sessionid=d HTTP/1.1
Host: bank.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0)
Gecko/20100101 Firefox/16.0
Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924

=> Compressed Length = 12,493 bytes – Possible match

CRIME – Feasibility

• The attacker can intercept the victim's network traffic.

• Victim authenticates to a website over HTTPS and
negotiates TLS Compression with the server.

• Victim accesses a non-HTTPS website.

• Browser supporting TLS Compression

CRIME – Counter Measures

• Disabling TLS compression on both Browser and Server
side.

• Updated Browser versions:
• Chrome: 21.0.1180.89 and above

• Firefox: 15.0.1 and above

• Opera: 12.01 and above

• Safari: 5.1.7 and above

• Apache 2.2 using mod_SSL:
SSLCompression flag is set to “SSLCompression off”

• Apache using mod_gnutls :
GnuTLSPriorities flag = “!COMP-DEFLATE"

BREACH

BREACH – What is it ?

• Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext

• Chosen plaintext attack on HTTP response

• Uses difference of response size information in due to
varying sizes of HTTP compression to recover plaintext
secret information

• Resurrection of CRIME

BREACH – How it works

 <form target="https://example.com:443/
products/catalogue.aspx?id=12345&user=username" >

 ...

 <td nowrap id="tdErrLgf">

 <a href="logoff.aspx?CSRFtoken=4bd634cda846fd7cb4cb00

 31ba249ca2">Log Off</td>

 Attacker can control this value

BREACH – How it works

 <form target="https://example.com:443/
products/catalogue.aspx?id=12345&user=username" >

 ...

 <td nowrap id="tdErrLgf">

 <a href="logoff.aspx?CSRFtoken=4bd634cda846fd7cb4cb00

 31ba249ca2">Log Off</td>

Attacker cannot control this parameter, want to
steal it

BREACH – How it works

 GET /product/?id=12345&user=CSRFtoken=a HTTP /1.1

 Host: example.com

 <form target="https://example.com:443/
products/catalogue.aspx?id=12345&user=CSRFtoken=a" >

 ...

 <td nowrap id="tdErrLgf">

 <a href="logoff.aspx?CSRFtoken=4bd634cda846fd7cb4cb00

 31ba249ca2">Log Off</td>

Size of response < Previous size = Match

Size of response >= Previous size = Mismatch

BREACH – Feasibility

• The application supports HTTP compression.

• The response should reflect back user's input.

• The response should have some sensitive/ secret
information embedded in the body.

BREACH – Counter Measures

• Mask the secret:
• new secret = random || (random ⊕ previous secret)

• Enable anti-automation techniques

• Monitor your traffic

• Separate secrets from user input

• Disable HTTP compression

TIME

TIME - What is it ?

• Timing Info-leak Made Easy

• Chosen plaintext attack on HTTP response

• Uses difference of response time information in due to
varying sizes of HTTP compression to recover plaintext
secret information

• Resurrection of CRIME

TIME – How it works

TIME – How it works

TIME – How it works

TIME – How it works

TIME – How it works

 Screenshot credit - Tal Be'ery BH presentation

TIME – How it works

Padding

Padding

Padding

TIME – Feasibility

• No requirements for Man-in-the-Middle

• Concentrate on HTTP responses

• The attacker creates HTTP request with JavaScript and
response timing leaks the request size.

• Repeat for few times to void aberration due to network
jitter.

TIME – Counter Measures

• Adding random timing delays to the decryption

• Browser should support and respect ``X-Frame-Options”

• Strict restriction on reflection of user input in the
response.

• Enable anti-automation techniques like CAPTCHA, CSRF
token

Anti-Automation Recommendations

• Rate limiting using HAProxy

• Rate limiting via various DDOS protection

Comparison of counter measures

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME

CLIENT
SIDE

Upgrade
browsers

Upgrade
browsers
with no TLS
compression
support

Upgrade
browsers
with X-
Frame-
Options

SERVER
SIDE

random
timing
delays

Throttle
client
initiated re-
negotiations

Disable TLS
compression

Mask the
secret

Restrict
reflection of
user input

Use RC4 Use RC4
Do not use
RC4

anti-
automation
techniques

anti-
automation
techniques

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Separate
secrets from
user input

Random
timing
delay

Comparison of counter measures

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME

CLIENT
SIDE

Upgrade
browsers

Upgrade
browsers
with no TLS
compression
support

Upgrade
browsers
with X-
Frame-
Options

SERVER
SIDE

random
timing
delays

Throttle
client
initiated re-
negotiations

Disable TLS
compression

Mask the
secret

Restrict
reflection of
user input

Use RC4 Use RC4
Do not use
RC4

anti-
automation
techniques

anti-
automation
techniques

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Separate
secrets from
user input

Random
timing
delay

Comparison of counter measures

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME

CLIENT
SIDE

Upgrade
browsers

Upgrade
browsers
with no TLS
compression
support

Upgrade
browsers
with X-
Frame-
Options

SERVER
SIDE

Throttle
client
initiated re-
negotiations

Disable TLS
compression

Mask the
secret

Restrict
reflection of
user input

Use RC4 Use RC4
Do not use
RC4

anti-
automation
techniques

anti-
automation
techniques

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Comparison of counter measures

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME

CLIENT
SIDE

Upgrade
browsers

Upgrade
browsers
with no TLS
compression
support

Upgrade
browsers
with X-
Frame-
Options

SERVER
SIDE

Throttle
client
initiated re-
negotiations

Disable TLS
compression

Mask the
secret

Restrict
reflection of
user input

Use RC4 Use RC4
Do not use
RC4

anti-
automation
techniques

anti-
automation
techniques

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Comparison of counter measures

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME

CLIENT
SIDE

Upgrade
browsers

Upgrade
browsers
with no TLS
compression
support

Upgrade
browsers
with X-
Frame-
Options

SERVER
SIDE

Throttle
client
initiated re-
negotiations

Disable TLS
compression

Mask the
secret

Restrict
reflection of
user input

Use RC4 Use RC4
Do not use
RC4

anti-
automation
techniques

anti-
automation
techniques

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

Summarizing counter measures

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME

CLIENT
SIDE

Upgrade
browsers

Upgrade
browsers
with no TLS
compression
support

Upgrade
browsers
with X-
Frame-
Options

SERVER
SIDE

Throttle
client
initiated re-
negotiations

Disable TLS
compression

Mask the
secret

Restrict
reflection of
user input

Use RC4 Use RC4
Do not use
RC4

anti-
automation
techniques

anti-
automation
techniques

Upgrade to
TLS 1.1 +

Upgrade to
TLS 1.2

Upgrade to
TLS 1.2

• Special Thanks to Shawn, Tom, Michael, Javed, Jonathan,
Tim, Josh, Alban, Ryan, Aaron and everybody in iSEC

• Whitepaper: Attacks on SSL (bit.ly/1cAqL7o)

• Pratik Guha Sarkar

• Security Consultant at iSEC Partners

• psarkar@isecpartners.com | @pragusa55

• Shawn Fitzgerald

• Principal Security Consultant at iSEC Partners

• shawn@isecpartners.com

Thank You

http://bit.ly/1cAqL7o

