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BEAST - What is it ? 
 

 
• Browser Exploit Against SSL/TLS 

 

• Used crypto flaws in SSL to recover plaintext cookies 

 

• Refined previous attacks on CBC in SSL to make them 
practical 

• Innovation was exploiting chosen boundary capability 
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HTTP Request – What Do I Know? 

POST /login HTTP/1.1 

Host: bank.com 

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0) 
Gecko/20100101 Firefox/16.0 

Cookie: a=secrets298fc1c149afbf4c8996fb924 

I know everything but the cookie! 



Chosen Boundary in a Slide 
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Attacker pads to a block boundary! 

Chosen Boundary in a Slide 

What the attacker knows 

What the attacker DOESN’T know. 

Different Ciphertext Blocks 
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Put It Together: BEAST 

• Attacks SSL 3.0 TLS 1.0 with CBC Cipher suites 

 

• Steals Cookies 

 

• Works on HTTPS-only sites 

• Sorry Paypal 



BEAST – Feasibility 

 

• Ability to eavesdrop on the network 

 

• Force victim to visit attackers page 

 

• Ability to inject plaintext in an active SSL/TLS session 



BEAST – Counter Measures 

 

• Upgrade browsers 

 

• Enable TLS 1.1, preferably 1.2 

 

• Use RC4 
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Interlude: Protocol Downgrades 

• We’ve mentioned TLS 1.1 and 1.2 

• They’re great! 

 

• There’s a problem: 

 

 

They provide no security at all against an 
active attacker 

 



Interlude: Protocol Downgrades 

TLS 1.1 - Browser retries ! 

TLS 1.2 

TLS 1.0 - Browser retries ! 

drops the packet drops the packet 

drops the packet 

drops the packet 

“Success” SSLv3 No Extensions - Browser retries ! 

User Server 



Interlude: Protocol Downgrades 

Why Do Browsers Support Fallback? 

 

• Networks Are Hostile to TLS 1.1+ 

• Middleboxes don’t recognize it and choke 

 

• Sites Can’t Speak TLS 1.1+ 

• Sometimes an error (not so bad) 

• Sometimes they just hang (quite bad) 



Interlude: Protocol Downgrades 

• Until Browsers Remove Fallback to TLS 1/SSLv3 we 
cannot fully rely on TLS 1.1+ 

• Until sites stop breaking for TLS 1.1+ Browsers can’t 
Remove the Fallback 

 

• Not to call anyone out…. But…. 

• https://www.imperialviolet.org/2013/10/07/f5update.html 

https://www.imperialviolet.org/2013/10/07/f5update.html
https://www.imperialviolet.org/2013/10/07/f5update.html
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Lucky 13 - What is it ? 
 

 
• Successor of Padding Oracle Attack 

 

• Timing attack on CBC encryption mode 

 

• 13 bytes of header information in TLS MAC calculation 
leaks timing information during decryption. 
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Lucky 13 – How it works  

Extra time to validate MAC 

Ideal time to validate MAC 

Time to validate Padding 



Lucky 13 – Feasibility 

• Needs Man-in-the-middle  

 

• CBC-mode encryption in versions of TLS are potentially 
vulnerable. 

 

• Requires huge number of request 

 

• Requires no Network jitter 



Lucky 13 – Counter Measures 

• Uniform processing time to decrypt ciphertexts 

 

• Add random timing delays to the decryption for any 
timing attack 

 

• Using stream cipher like RC4 

 

• Using an authenticated encryption algorithm, such as 
AES-GCM 



RC4 



RC4 Biases - What is it ? 
 



RC4 Biases - What is it ? 
 



RC4 Biases – Feasibility 

• Force victim to renegotiate. 

• This attack will require over 4 billion SSL 

connections or re-negotiations for an individual HTTP 
session. 



RC4 Biases – Counter Measures 

• Researchers still working on finding mitigations of this 
issue. 

 

• Temporary mitigations  

• Throttle client initiated re-negotiations and connections 
from individual IP addresses 

• If possible use block ciphers with mitigations of timing 
and CBC mode encryption attack mitigated 



Compression 



How compression works? 

. 

•DEFLATE compression mechanism 



CRIME 



CRIME - What is it ? 
 

 
• Compression Ratio Info-leak Made Easy 

 

• Chosen plaintext attack on HTTP request 

 

• Uses size information in TLS compression to recover 
plaintext cookies 

 

 



CRIME – How it works  

CRIME Attacker 

Victim User 



CRIME – How it works  

GET /evil_request_path HTTP/1.1 

Host: bank.com 

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0) 
Gecko/20100101 Firefox/16.0 

Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924 

Attacker doesn’t control entire request, 
but can see its cipher text on the wire 
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CRIME – How it works  

GET /sessionid=a HTTP/1.1 
Host: bank.com 
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0) 
Gecko/20100101 Firefox/16.0 
Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924 
 

=> Compressed Length = 12,494 bytes – Not a match 
 

GET /sessionid=d HTTP/1.1 
Host: bank.com 
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:16.0) 
Gecko/20100101 Firefox/16.0 
Cookie: sessionid=d3b0c44298fc1c149afbf4c8996fb924 
 

=> Compressed Length = 12,493 bytes – Possible match 
 



CRIME – Feasibility 

 

• The attacker can intercept the victim's network traffic.  

 

• Victim authenticates to a website over HTTPS and 
negotiates TLS Compression with the server. 

 

• Victim accesses a non-HTTPS website. 

 

• Browser supporting TLS Compression 



CRIME – Counter Measures 

• Disabling TLS compression on both Browser and Server 
side.  

• Updated Browser versions: 
• Chrome: 21.0.1180.89 and above 

• Firefox: 15.0.1 and above 

• Opera: 12.01 and above 

• Safari: 5.1.7 and above 

• Apache 2.2 using mod_SSL:  
SSLCompression flag is set to “SSLCompression off” 

• Apache using mod_gnutls :  
GnuTLSPriorities flag = “!COMP-DEFLATE" 



BREACH 



BREACH – What is it ? 

• Browser Reconnaissance and Exfiltration via Adaptive 
Compression of Hypertext 

 

• Chosen plaintext attack on HTTP response 

 

• Uses difference of response size information in due to 
varying sizes of HTTP compression to recover plaintext 
secret information 

 

• Resurrection of CRIME 

 



BREACH – How it works  

 <form target="https://example.com:443/ 
products/catalogue.aspx?id=12345&user=username" > 

 ... 

 <td nowrap id="tdErrLgf"> 

 <a href="logoff.aspx?CSRFtoken=4bd634cda846fd7cb4cb00 

 31ba249ca2">Log Off</a></td> 

 

 

 

 Attacker can control this value 



BREACH – How it works  

 <form target="https://example.com:443/ 
products/catalogue.aspx?id=12345&user=username" > 

 ... 

 <td nowrap id="tdErrLgf"> 

 <a href="logoff.aspx?CSRFtoken=4bd634cda846fd7cb4cb00 

 31ba249ca2">Log Off</a></td> 

 

 

 

Attacker cannot control this parameter, want to 
steal it 



BREACH – How it works  

 GET /product/?id=12345&user=CSRFtoken=a HTTP /1.1 

 Host: example.com 

 

 <form target="https://example.com:443/ 
products/catalogue.aspx?id=12345&user=CSRFtoken=a" > 

 ... 

 <td nowrap id="tdErrLgf"> 

 <a href="logoff.aspx?CSRFtoken=4bd634cda846fd7cb4cb00 

 31ba249ca2">Log Off</a></td> 

 

 

Size of response < Previous size = Match 

Size of response >= Previous size = Mismatch 

 

 



BREACH – Feasibility 

• The application supports HTTP compression. 

 

• The response should reflect back user's input. 

 

• The response should have some sensitive/ secret 
information embedded in the body. 



BREACH – Counter Measures 

• Mask the secret: 
•  new secret = random || (random ⊕ previous secret) 

 

• Enable anti-automation techniques 

 

• Monitor your traffic 

 

• Separate secrets from user input 

 

• Disable HTTP compression 

 



TIME 



TIME - What is it ? 
 
• Timing Info-leak Made Easy 

 

• Chosen plaintext attack on HTTP response 

 

• Uses difference of response time information in due to 
varying sizes of HTTP compression to recover plaintext 
secret information 

 

• Resurrection of CRIME 

 

 



TIME – How it works 
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TIME – How it works  

 

 

 

 

 

 

 

 
      Screenshot credit - Tal Be'ery BH presentation 



TIME – How it works 

Padding 

Padding 

Padding 



TIME – Feasibility 

• No requirements for Man-in-the-Middle 

 

• Concentrate on HTTP responses 

 

• The attacker creates HTTP request with JavaScript and 
response timing leaks the request size. 

 

• Repeat for few times to void aberration due to network 
jitter. 



TIME – Counter Measures 

• Adding random timing delays to the decryption 

 

• Browser should support and respect ``X-Frame-Options” 

 

• Strict restriction on reflection of user input in the 
response. 

 

• Enable anti-automation techniques like CAPTCHA, CSRF 
token 



Anti-Automation Recommendations 

• Rate limiting using HAProxy 

 

• Rate limiting via various DDOS protection 
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Summarizing counter measures 

BEAST Lucky 13 RC4 Biases CRIME BREACH TIME 
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TLS 1.2 



• Special Thanks to Shawn, Tom, Michael, Javed, Jonathan, 
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• Whitepaper: Attacks on SSL (bit.ly/1cAqL7o) 
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Thank You 

http://bit.ly/1cAqL7o

