

About US

Hosted by OWASP & the NYC Chapter

●

●

●

What?

Yet another application layer DOS attack that
strives for resource starvation through
asymmetric resource utilization.
● Method
● Tool
● Stats
● Defence
● Usage possibilities

Why?

DOS Classification

● Crash, non-resource attack, degrading IT
capabilities

● Resource consumption attack
● Network resource exhaustion
● Infrastructure device resource exhaustion
● Target resource exhaustion

● OS or network layer (e.g. SYN flood)
● Application layer
● Business logic “layer”

From DoS Attack Taxonomy [1]

http://blogs.gartner.com/anton-chuvakin/2012/06/06/quick-dos-attack-taxonomy/

Classic Application Layer
DOS/DDOS
DDOSing blindly

● GET index.html
● 10000 x of the GET
● No feedback
● Near-Symmetrical

load

Smarter Bots
● SlowLoris
● SlowHttptest
● SlowRead
● PKI abuse
● SQL wildcards
● WebSockets

connection hogging

Some Exotic L7 DOS

● Using ‘%’ in the request may cause the DB to
fetch every row in the DB (use genetic
algorithm to figure out a payload that makes
the server to work the hardest?)

● Business logic - “above L7 attacks”
○ Too many items in the cart
○ Too much logging caused by invalid inputs
○ Too many temporary objects in memory

(attachments for webmail)

Get Flooding With Spice

● Is not exotic
● It ain’t Slow*
● Not going for exhaustion of 20k HTTP

connections
● Resource consumption is asymmetrical by

nature, just trying to get bigger divide
● Just a Get flood, with some analysis done

before flooding takes place

The Proposed Method
Method of detection of the critical resource
● Spider over the web site and collect transfer times for

each resource
● Calculate the average speed and distribution of transfers
● Identify the resources that have slower average transfer

times

Transfer time's correlation with load
● CPU intensive resources take more time to response
● Resource size is not significant

Lies, Dirty Lies and Statistics

Using Statistics to Normalize
the Data

● Mean as the measure of central tendency
○ Calculate the mean of all resource download speeds

○ Calculate the means of each resource download
speeds

○ Select the resources whose download speeds are less
(slower) than the mean of all download speeds

● Selecting resources with lower mean
● Discarding resources with large variance

Speed Distribution

Demo

Attack Like Stage of Testing

Measurement of service degradation while doing a hard test
for narrowing down the choice of links

Original
mean/sDev

Stressed
mean/sDev

Banit_0 23.039/3.531 28.058/6.272

Banit_1 23.039/3.531 27.568/6.039

Banit_2 23.039/3.531 27.389/5.927

$

./crwlr --url http://10.12.0.3/Concrete5/Concrete5-6.0/ --verbose 1
--depth 3 --count 10 --xml concrete.xml

$

crwlr --count 100 --in concrete.xml&

crwlr --count 100 --in concrete.xml&

crwlr --count 100 --in concrete.xml&

...

http://10.12.0.3/Concrete5/Concrete5-6.0/index.php/blog/

original mean/sdev: 23.039/3.531 stress mean/sdev: 28.058/6.272

original mean/sdev: 23.039/32.531 stress mean/sdev: 27.568/6.039

original mean/sdev: 23.039/3.531 stress mean/sdev: 27.389/5.927

Similar Tools
DoSHTTP
● No statistical analysis

JMeter
● Performance measurement
● Extendible

Tsung
● Erlang based many(upto 1M) user simulation

Pylot
● Very close, some statistical analysis
● Not a crawler
● No parallel testing, load measurement

The Art of (D)DOS Defence

“Hard it is, but try we can for DOS at least”
● Load Balancing
● Identify/Fix resource hogs

○ Use our tool for this

● Apache config suggestions
● Other Apache modules
● Advanced mod_security protection

“Fail those will if used is force”

Load Balancers

Stopping Get Floods using:
● Rate-limiters
● Unusual traffic filters
● Source checks

Possible issues
● No real sense of load on the targets
● Internal IP leakage
● If protections are sensed the attacks could be crafted to

perform just under the threshold
● If the attack detection is based on similarity of requests

mutation could fool it

HAProxy

● Divides the load between the back-end
servers

● Different policies for static and and dynamic
resources

● Can set some thresholds[2]

...
 tcp-request content reject if { src_get_gpc0 gt 0 }
 http-request deny if { src_get_gpc0 gt 0 }
...
 use_backend bk_web_static if { path_end .jpg .png .gif .css .js }
...
 acl abuse src_http_req_rate(ft_web) ge 10
 acl flag_abuser src_inc_gpc0(ft_web)
 http-request deny if abuse flag_abuser

Commercial Protection
Services
● Few players using limiters for:

○ Resource rate
○ Connection
○ Originating IP

● Some Slow* defences
● mod_security like measures against SQLi and XSS
● Good cloud based solutions cost >$150/m
● “ would not use the full-blown solution because

don’t want to degrade the user experience”
● Those could fail as described in Universal-DDOS-

Mitigation_Bypass[3]

Using the Tool for Good

● Identify/Fix resource hogs
○ Use our tool for this
○ Manual(intelligent) tweaking of the request to get

possible higher stress
○ Confirm the high resource usage by stressing the

“finds” with parallel requests and measuring the
degradation

● In ideal world the tool would generate conf
files for DOS protection modules

Playing with Apache Configs

Baseline, no protection
● 1 client running 10x parallel requests of the most

expensive resource
● 3% CPU on the client machine
● Server: i7, 4 core, 8 gb
● 98% CPU utilization on the server

Standard config measures ?
Nothing that would really help Get Floods, but there
are some setting that would help with Slow* attacks[4]

mod_security

● Simple mod_security protection [5]
○ Requests per IP limit, blocking the violators
○ Effective but too strict
○ Blocks the offensive IP right away.
○ CPU usage goes down to 0%

● Advanced mod_security protection
○ Identification of regular flows
○ Out of ordinary flow filtering
○ State coherence checks
○ Still only a theory

SecRule ip:requests "@eq 50" "phase:1,pass,nolog,setvar:ip.block=1,
expirevar:ip.block=5,setvar:ip.blocks=+1,expirevar:ip.blocks=3600"

mod_limitipconn

Limits the number of simultaneous downloads
permitted from a single IP address [6]
“This module is not designed to prevent denial-of-service attacks.” -README

Cons:
● A bit crude
● Need to identify the (arbitrary) limit
Pros:
● Limites CPU to 38% CPU

 MaxConnPerIP 3

mod_qos

Implements control mechanisms to provide
different priority to requests and control server
access based on available resources [7]
 QS_SrvMaxConnPerIP 50

Works
● Limites CPU to 38% CPU
● “QS_SrvMinDataRate” will help to

fight slow* attacks

mod_bwshare

Accepts or rejects HTTP requests from each
client IP address, based on thresholds set by
past traffic from a particular IP address[8]

● Tricky with setting the limits
● Sophisticated way of setting a limit

BW_tx1debt_max 30
BW_tx1cred_rate 0.095
BW_tx2debt_max 3000000
BW_tx2cred_rate 2500

mod_throttle

 Is intended to reduce the load on your server,
and the data transfer generated by popular
virtual hosts, directories, locations, or users.
Discontinued...
The rules:
 N/A
The effect:
 N/A

mod_evasive

Provide evasive action in the event of an HTTP
DOS /DDoS or brute force attack. [9]
DOSPageCount 10

DOSSiteCount 100

DOSBlockingPeriod 60

● Once detect all the connections
from an attacker are dropped

● This really works.
● Our favorite for now

Conflicts with Slow* Attack
Protection
● Slow* attack mitigation is an addition
● mod_evasive could not protect from these
● There is no conflict (good news)

We suggest using these apache directives for
Slow* attack mitigation:
RequestReadTimeout

KeepAliveTimeout

KeepAlive

MaxRequestWorkers

http://httpd.apache.org/docs/current/mod/mod_reqtimeout.html#requestreadtimeout
http://httpd.apache.org/docs/current/mod/mod_reqtimeout.html#requestreadtimeout
http://httpd.apache.org/docs/current/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/current/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/current/mod/core.html#keepalive
http://httpd.apache.org/docs/current/mod/core.html#keepalive
http://httpd.apache.org/docs/current/mod/mpm_common.html#maxrequestworkers
http://httpd.apache.org/docs/current/mod/mpm_common.html#maxrequestworkers

mod_httpbl

Not exactly for protecting the server from a
DOS attack but is cool as it is leveraging the
“Project Honey pot”

● HoneyPot collects a list of offenders
● List of offenders gets blacklisted

 httpbl.sourceforge.net

http://httpbl.sourceforge.net/

Usage
of HTTP Time Bandit

The Good

Find potential CPU/DB hogs in my web apps

The Bad

Automated iterative analyzer attacker

The Ugly
Probably should not be spelled out:)

Imagine “The Bad” x 1000

Back to the Future

● Understanding Load
Balancers

● SQL wildcard usage
● State Reset cost

analysis
● Automated Attacker,

service degradation
measurement

Thank You
tgevorgyan@qualys.com

@tukharian, vtoukharian@qualys.com

https://github.com/Qualys/timeBandit

mailto:vtoukharian@qualys.com
https://github.com/Qualys/timeBandit
https://github.com/Qualys/timeBandit

References
1. http://blogs.gartner.com/anton-chuvakin/2012/06/06/quick-dos-attack-taxonomy
2. http://blog.exceliance.fr/2012/02/27/use-a-load-balancer-as-a-first-row-of-defense-against-ddos
3. https://media.blackhat.com/us-13/US-13-Lee-Universal-DDoS-Mitigation-Bypass-WP.pdf
4. http://httpd.apache.org/docs/current/misc/security_tips.html
5. http://blog.cherouvim.com/simple-dos-protection-with-mod_security
6. http://dominia.org/djao/limitipconn.html
7. http://opensource.adnovum.ch/mod_qos
8. http://www.topology.org/src/bwshare/README.html
9. http://www.tecmint.com/protect-apache-using-mod_security-and-mod_evasive-on-rhel-centos-fedora/

http://blogs.gartner.com/anton-chuvakin/2012/06/06/quick-dos-attack-taxonomy/
http://blog.cherouvim.com/simple-dos-protection-with-mod_security
http://dominia.org/djao/limitipconn.html
http://opensource.adnovum.ch/mod_qos

